The Brain or the Body: What is the Target for Pain Treatment?

Roger B. Fillingim, PhD

Disclosure

• Nothing to disclose

Learning Objectives

- List available pain treatments target the body, brain or both
- Describe simple methods that are available to identify centralized pain
- Explain why matching treatments to the patient's pain mechanisms will improve outcomes

APS Track 2016: Mind-Body Therapies for Pain

- The Brain or the Body: What is the Target for Pain Treatment? (Fillingim)
- Noninvasive Neuromodulatory Approaches to the Treatment of Chronic Pain (Dr. Vitaly Napadow)
- Acupuncture Analgesia: Therapy or Sham? (Dr. Rick Harris)
- Neurochemical Imaging as a Probe of Chronic Pain and its Treatment (Dr. Rick Harris)
- Hands On or Hands Off: A Tour of Current Issues Impacting Spinal Manipulative Therapy for Spinal Pain (Dr. Steven George)

APS Member Benefits

- Multidisciplinary community
- Information and publications
- Advocacy and influence
- Educational and professional development
- Funding Opportunities
- Support for Young Investigators and Early-Career Professionals
- Professional collaboration and unrivalled resources

Make APS Your Primary Professional Resource

Join today!

www.americanpainsociety.org

APS Track: PAINWeek 2016

Overview

- Conceptual Models of Pain
- Peripheral vs. central pain mechanisms
- Body vs. brain based treatments
- Conclusions & Recommendations

Biomedical Model of Pain

• Pain is a sensory experience arising from peripheral nociception

• Pain is a symptom of disease or tissue damage

• Pain is proportional to tissue damage or observable pathology

• Correcting the disease or tissue damage will ameliorate the pain

Biomedical Model of Pain: Clinical Corollaries

- Extensive testing to identify peripheral drivers of pain is needed
- Peripheral abnormalities that are identified need to be corrected in order to reduce the pain

• Lack of physical findings calls into question the validity of the pain

Important Themes in Pain Research

- Gate Control Theory (Melzack & Wall, 1965)
- Descending Pain Inhibition (Kosterlitz, 1975; Hughes, 1975; Basbaum & Fields, 1978)
- Central Sensitization (Woolf, 1983)
- Centralized Pain (Phillips & Clauw, 2011)

George L. Engel

The biomedical model embraces both reductionism, the philosophic view that complex phenomena are derived from a single primary principle, and mind-body dualism, the doctrine that separates the mental from the somatic.

The Biopsychosocial Model of Pain

The Biopsychosocial Model Explains...

- The poor correspondence between tissue damage and pain
- The difficulty in identifying people at risk for chronic pain
- The limited efficacy of unimodal treatment of chronic pain
- The robust individual differences that characterize pain
- Common factors that contribute to different kinds of pain

Just Hanging Around

Radiographic vs. Symptomatic Osteoarthritis (Lawrence, et al, 2008)

Abnormal Lumbar MR Findings in Subjects with no Low Back Pain (Carragee, et al, 2006)

The Biopsychosocial Model Explains...

- The poor correspondence between tissue damage and pain
- The difficulty in identifying people at risk for chronic pain
- The limited efficacy of unimodal treatment of chronic pain
- The robust individual differences that characterize pain
- Common factors that contribute to different kinds of pain

Pain After Laparascopic Cholecystectomy (Bisgaard, et al, 2001)

Ratings of a 48 Degree Thermal Stimulus

The Biopsychosocial Model Explains...

- The poor correspondence between tissue damage and pain
- The difficulty in identifying people at risk for chronic pain
- The limited efficacy of unimodal treatment of chronic pain
- The robust individual differences that characterize pain
- Common factors that contribute to different kinds of pain

Chronic Overlapping Pain Conditions (COPCs)

www.chronicpainresearch.org

Pain Prone Phenotype

- Female
- Early life trauma
- Family history of chronic pain
- Personal history of chronic centrally-mediated symptoms
- Cognitions such as catastrophizing
- Diffuse hyperalgesia, attenuated descending analgesia
- Altered pain-related brain responses

Exposure to "stressors" or acute, peripheral nociceptive input

New or different region of chronic pain

Overview

- Conceptual Models of Pain
- Peripheral vs. central pain mechanisms
- Body vs. brain based treatments
- Conclusions & Recommendations

Nociception, Pain, Negative Moods, and Behavior Selection

Marwan N. Baliki^{1,*} and A. Vania Apkarian^{1,2,3,*}

¹Department of Physiology ²Department of Anesthesia ³Department of Physical Medicine and Rehabilitation Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60610, USA *Correspondence: m-baliki@northwestern.edu (M.N.B.), a-apkarian@northwestern.edu (A.V.A.) http://dx.doi.org/10.1016/j.neuron.2015.06.005

Peripheral Pain Triggers

• Injury

- Trauma
- Surgery
- Overuse
- Disease processes
 - Arthritis
 - Ischemia
 - Neuropathies

Peripheral Pain Mechanisms (Gangadharan & Khuner, 2013)

Spinal Pain Mechanisms

Central Pain Mechanisms

Overview

- Conceptual Models of Pain
- Peripheral vs. central pain mechanisms
- Body vs. brain based treatments
- Conclusions & Recommendations

So, if peripheral (body) and central (brain) mechanisms are both potentially important...

Which do you target?

Available Pain Treatments

Medications (537 on Drug.com)	Surgeries/Procedures	Physical Modalities	Psychological Treatments	Alternative Therapies
NSAIDS	Epidurals	Ice/Heat	Self-management	Acupuncture
Local Anesthetics	Radiofrequency Nerve Lesioning	Electrical stimulation & TENS	Cognitive Behavioral Therapy	Therapeutic touch and Reiki
Opioids	Trigger Pt Injections	Traction	Relaxation	Tai Chi
Antidepressants	Facet joint injections	Ultrasound & Iontophoresis	Motivational interviewing	Herbal Remedies
Antiepileptics	SI joint injections	Laser/Light Therapy	Biofeedback	Aromatherapy
Capsaicin	Sympatholysis	Joint Mobilization	Mindfulness meditation	Nutritional therapy
Ketamine	Intrathecal pump implants	Manual Therapy & Chiropractic	Acceptance & Commitment Therapy	Dietary Supplements
Ziconotide	Spinal Cord Stimulation	Massage	Hypnosis	
Cannabinoids	Vertebral augmentation	Exercise	Resilience Training	
	Intradiscal denervation	Brain stimulation	Interpersonal psychotherapy	

Underlying Mechanisms in Chronic Pain States

Peripheral (nociceptive)

Pain due to inflammation or mechanical damage in tissues

Responsive to NSAIDS and opioids

Responds to procedures

Classic examples

- Acute pain due to injury
- Osteoarthritis
- Rheumatoid arthritis

Underlying Mechanisms in Chronic Pain States

Peripheral (nociceptive)	Neuropathic
Pain due to inflammation or mechanical damage in tissues	Damage or entrapment of peripheral nerves
Responsive to NSAIDS and opioids	Responds to both peripheral and centrally acting pain therapies
Responds to procedures	Entrapment responds to surgery or injection
 Classic examples Acute pain due to injury Osteoarthritis Rheumatoid arthritis 	 Classic examples Diabetic neuropathic pain Postherpetic neuralgia

Underlying Mechanisms in Chronic Pain States

Peripheral (nociceptive)	Neuropathic	Centralized
Pain due to inflammation or mechanical damage in tissues	Damage or entrapment of peripheral nerves	Central disturbance in pain processing (diffuse hyperalgesia/ allodynia)
Responsive to NSAIDS and opioids	Responds to both peripheral and centrally acting pain therapies	Responsive to CNS-acting drugs altering neurotransmitters involved in pain, sleep, & mood disturbance
Responds to procedures	Entrapment responds to surgery or injection	Often characterized by presence of multiple pain conditions
 Classic examples Acute pain due to injury Osteoarthritis Rheumatoid arthritis 	 Classic examples Diabetic neuropathic pain Postherpetic neuralgia 	 Classic examples Fibromyalgia Irritable bowel syndrome Temporomandibular disorder Tension headache

Case Scenario

- Dolores is 57 years old and reports bilateral knee pain, left worse than right. Pain has been present for more than a year but increasingly interferes with activities in the last few months.
- Dolores is generally healthy but has a BMI of 31.5 and has well-controlled hypertension.
- Radiographs reveal moderate knee OA in both joints

The Example of Knee Osteoarthritis (OA)

- Leading cause of disability in older adults
- Classically viewed as peripherally-based

- Treatments are often been body-based
 - NSAIDS
 - Injections
 - Joint replacement

Understanding Pain and Limitations in OsteoArthritic Disease (UPLOAD) Study

 Two-site study designed to assess biopsychosocial factors contributing to ethnic group differences in knee OA-related pain and disability.

QST Session

Thermal Pain Testing*	 Heat pain threshold & tolerance Temporal summation (TS) at three temperatures
Mechanical Pain Testing*	 Pressure pain thresholds Punctate mechanical pain & TS
Cold Pressor Pain	 Cold pressor pain at 8, 12, 16 deg C Ratings obtained at 30 sec & 1-minute
Conditioned Pain Modulation	 Heat TS (left hand) before & after 1-minute immersion in cold water (right hand)

*Thermal and mechanical testing performed on most affected knee and unaffected body sites

Descriptive Statistics

Variable	OA High Pain* (n=155)	OA Low Pain* (n=129)	Controls (n=119)		
Demographic Variables					
Age (Years)	55.4 (7.1)	58.4 (7.9)	57.4 (8.0)		
Sex (% Female)	65.3	64.8	63.9		
Race (% White)*	27.3	39.2	70.6		
Clinical Variables					
GCPS-Characteristic Pain (0-100)	67.7 (14.1)	30.6 (12.7)	10.2 (16.8)		
GCPS-Disability (0-100)	59.7 (24.5)	24.6 (21.7)	2.1 (7.0)		
WOMAC-Pain (0-20)	9.8 (4.1)	4.5 (2.8)	0.6 (1.7)		
WOMAC-Physical Function (0-)	31.8 (13.7)	13.9 (10.2)	1.8 (4.8)		
SPPB Total Score	9.2 (2.1)	10.5 (1.5)	10.9 (1.4)		
CES-D Scores	11.8 (8.3)	7.6 (6.4)	6.5 (6.7)		

* High vs. low OA pain based on median split of GCPS-Characteristic Pain Score (median=50)

Heat Pain Thresholds and Tolerances for OA Patients and Controls

Groups with unlike letters differ from each other, p < 0.05

Pressure Pain Thresholds for OA Patients and Controls

Groups with unlike letters differ from each other, p < 0.05

Punctate Mechanical Pain for OA Patients and Controls

*OA-High differs from the other two groups in both average rating and slope (p < 0.05)

Temporal Summation of Heat Pain for OA Patients and Controls

*OA-High differs from the other two groups in both average rating and slope (p < 0.05)

Pain Modulatory Balance

Pain Modulatory Imbalance

Arthritis Care & Research Vol. 65, No. 11, November 2013, pp 1786–1794 DOI 10.1002/acr.22070 © 2013, American College of Rheumatology

ORIGINAL ARTICLE

Psychological Profiles and Pain Characteristics of Older Adults With Knee Osteoarthritis

YENISEL CRUZ-ALMEIDA,¹ CHRISTOPHER D. KING,¹ BUREL R. GOODIN,² KIMBERLY T. SIBILLE,¹ TONI L. GLOVER,¹ JOSEPH L. RILEY,¹ ADRIANA SOTOLONGO,² MATTHEW S. HERBERT,² JESSICA SCHMIDT,² BARRI J. FESSLER,² DAVID T. REDDEN,² ROLAND STAUD,¹ LAURENCE A. BRADLEY,² AND ROGER B. FILLINGIM¹

Psychological Profiles Among OA Patients

Measures	Cluster 1 Low Distress (n=54)	Cluster 2 Low Pos Aff (n=45)	Cluster 3 Low Optim (n=63)	Cluster 4 High Distress (n=32)	p-value
CSQ-R: Active	3.0 (0.9)	2.7 (1.0)	3.1 (1.0)	2.9 (1.0)	0.297
CSQ-R: Passive	1.9 (1.2) ^{<i>a,b</i>}	2.5 (1.0) ^{<i>d,e</i>}	3.3 (1.3)	3.7 (1.1)	0.001
KRS-18	66.8 (7.5) ^{<i>a,b,c</i>}	85.3 (7.0) ^{<i>d,e</i>}	75.4 (7.8) ^{<i>f</i>}	91.5 (10.8)	0.001
PVAQ	30.7 (9.1) ^{<i>a,b</i>}	34.0 (8.9) ^{<i>d,e</i>}	54.9 (7.5) ^{<i>f</i>}	63.0 (8.4)	0.001
CES-D	6.4 (5.5) ^{<i>a,c</i>}	10.6 (7.6)	9.3 (5.9)	12.4 (10.2)	0.001
PANAS: Positive	39.2 (7.0) ^{,c}	35.0 (6.8) ^{<i>d,e</i>}	39.6 (7.3)	39.1 (6.2)	0.001
PANAS: Negative	13.4 (4.2) ^{<i>a,b</i>}	15.8 (3.9)	16.0 (6.9)	16.2 (4.9)	0.001
STAXI Trait	15.7 (2.2) ^{<i>a</i>}	16.3 (2.3)	16.3 (2.9)	18.1 (6.8)	0.024
LOT-R	19.1 (4.7) ^b	17.4 (4.2)	16.4 (3.7)	17.8 (4.1)	0.001

Clinical Pain and Disability across Clusters

Low Distress and High Distress differ from all other clusters, p's < 0.05

Pressure Pain Thresholds Across Clusters

Low Distress differs from High Distress for both sites, p's < 0.05

Conditioned Pain Modulation Across Clusters

Case Scenario

- Dolores is 57 years old and reports bilateral knee pain, left worse than right. Pain has been present for more than a year but increasingly interferes with activities in the last few months
- Dolores is generally healthy but has a BMI of 31.5 and has well-controlled hypertension
- Radiographs reveal moderate knee OA in both joints

What else do you need to know?

Where on the Continuum Does Dolores Fall?

How Do You Assess for Centralized Pain?

- Pain body map
- Somatic symptoms
- Psychological function
- Quantitative sensory testing
 - Manual palpation

Where on the Continuum Does Dolores Fall?

Where on the Continuum Does Dolores Fall?

ARTHRITIS & RHEUMATISM Vol. 62, No. 10, October 2010, pp 2930–2940 DOI 10.1002/art.27585 © 2010, American College of Rheumatology

Body vs. Brain Based Treatments?

Thalamic Atrophy Associated With Painful Osteoarthritis of the Hip Is Reversible After Arthroplasty

A Longitudinal Voxel-Based Morphometric Study

Stephen E. Gwilym, Nicola Filippini, Gwenaelle Douaud, Andrew J. Carr, and Irene Tracey

- A. Thalamic gray matter volume in hip OA patients before and after arthroplasty. Results show a significant increase in thalamic gray matter volume after surgery (*P* < 0.05, with correction for multiple comparisons)
- B. Contrast of patients vs. controls in the thalamus demonstrates that the atrophy identified preoperatively was no longer present 9 months after surgery

Do These Treatments Target the Body or the Brain?

- NSAIDS
- Weight loss
- Exercise
- Meditation
- Arthroplasty

Summary

- Available pain treatments target the body, brain or (more commonly) both
- Matching treatments to the patient's pain mechanisms will improve outcomes
- While pain conditions are often thought of as peripheral vs. central, phenotyping each patient is necessary
- Simple methods are available to identify centralized pain

Thank You